Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 186: 114578, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458531

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a large group of stable synthetic surfactants that are incorporated into numerous products for their water and oil resistance and have been associated with adverse health effects. The present study evaluated the systemic and immunotoxicity of sub-chronic 28- or 10-day dermal exposure of PFHxS (0.625-5% or 15.63-125 mg/kg/dose) in a murine model. Elevated levels of PFHxS were detected in the serum and urine, suggesting that absorption is occurring through the dermal route. Liver weight (% body) significantly increased and spleen weight (% body) significantly decreased with PFHxS exposure, which was supported by histopathological changes. Additionally, PFHxS significantly reduced the humoral immune response and altered immune subsets in the spleen, suggesting immunosuppression. Gene expression changes were observed in the liver, skin, and spleen with genes involved in fatty acid metabolism, necrosis, and inflammation. Immune-cell phenotyping identified significant decreases in B-cells, NK cells, and CD11b+ monocyte/macrophages in the spleen along with increases in CD4+ and CD8+ T-cells, NK cells, and neutrophils in the skin. These findings support dermal PFHxS-induced liver damage and immune suppression. Overall, data support PFHxS absorption through the skin and demonstrate immunotoxicity via this exposure route, suggesting the need for further examination.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Camundongos , Animais , Modelos Animais de Doenças , Linfócitos T CD8-Positivos , Ácidos Sulfônicos/toxicidade , Fluorocarbonos/análise
2.
Biochem J ; 480(17): 1411-1427, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37622331

RESUMO

Metabolic reprogramming, including increased glucose uptake and lactic acid excretion, is a hallmark of cancer. The glycolytic 'gatekeeper' enzyme phosphofructokinase-1 (PFK1), which catalyzes the step committing glucose to breakdown, is dysregulated in cancers. While altered PFK1 activity and expression in tumors have been demonstrated, little is known about the effects of cancer-associated somatic mutations. Somatic mutations in PFK1 inform our understanding of allosteric regulation by identifying key amino acid residues involved in the regulation of enzyme activity. Here, we characterized mutations disrupting an evolutionarily conserved salt bridge between aspartic acid and arginine in human platelet (PFKP) and liver (PFKL) isoforms. Using purified recombinant proteins, we showed that disruption of the Asp-Arg pair in two PFK1 isoforms decreased enzyme activity and altered allosteric regulation. We determined the crystal structure of PFK1 to 3.6 Šresolution and used molecular dynamic simulations to understand molecular mechanisms of altered allosteric regulation. We showed that PFKP-D564N had a decreased total system energy and changes in the electrostatic surface potential of the effector site. Cells expressing PFKP-D564N demonstrated a decreased rate of glycolysis, while their ability to induce glycolytic flux under conditions of low cellular energy was enhanced compared with cells expressing wild-type PFKP. Taken together, these results suggest that mutations in Arg-Asp pair at the interface of the catalytic-regulatory domains stabilizes the t-state and presents novel mechanistic insight for therapeutic development in cancer.


Assuntos
Neoplasias , Fosfofrutoquinase-1 , Humanos , Regulação Alostérica , Eletricidade Estática , Fosfofrutoquinase-1/genética , Metabolismo dos Carboidratos , Neoplasias/genética
3.
Cell ; 184(17): 4480-4494.e15, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34320407

RESUMO

In neutrophils, nicotinamide adenine dinucleotide phosphate (NADPH) generated via the pentose phosphate pathway fuels NADPH oxidase NOX2 to produce reactive oxygen species for killing invading pathogens. However, excessive NOX2 activity can exacerbate inflammation, as in acute respiratory distress syndrome (ARDS). Here, we use two unbiased chemical proteomic strategies to show that small-molecule LDC7559, or a more potent designed analog NA-11, inhibits the NOX2-dependent oxidative burst in neutrophils by activating the glycolytic enzyme phosphofructokinase-1 liver type (PFKL) and dampening flux through the pentose phosphate pathway. Accordingly, neutrophils treated with NA-11 had reduced NOX2-dependent outputs, including neutrophil cell death (NETosis) and tissue damage. A high-resolution structure of PFKL confirmed binding of NA-11 to the AMP/ADP allosteric activation site and explained why NA-11 failed to agonize phosphofructokinase-1 platelet type (PFKP) or muscle type (PFKM). Thus, NA-11 represents a tool for selective activation of PFKL, the main phosphofructokinase-1 isoform expressed in immune cells.


Assuntos
Fagocitose , Fosfofrutoquinase-1 Hepática/metabolismo , Explosão Respiratória , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Viabilidade Microbiana/efeitos dos fármacos , Modelos Moleculares , NADPH Oxidases/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fagocitose/efeitos dos fármacos , Proteínas de Ligação a Fosfato/metabolismo , Fosfofrutoquinase-1 Hepática/antagonistas & inibidores , Fosfofrutoquinase-1 Hepática/ultraestrutura , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Recombinantes/isolamento & purificação , Explosão Respiratória/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...